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Percolation threshold of correlated two-dimensional lattices
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Previous simulations of percolation on correlated square and cubic Idtbgs. Rev. E56, 6586(1997)]
have been extended to all of the common two-dimensional lattices, including triangular, square 1-2, honey-
comb, and kagome. Simulations were performed on lattices of up toXl0Q24 sites. The results are inde-
pendent of lattice size except, possibly, for a weak dependence at large correlation lengths. As in the previous
studies, all results can be fit by a Gaussian function of the correlation Iemgthzpfﬂpg—p?)e‘ﬂwz.
However, there is some evidence that this fit is not theoretically significant. For the self-matching triangular
and the matching square and square 1-2 lattices, the percolation thresholds satisfy the Sykes-Essam relation
pe(L)+pe(L*)=1.[S1063-651%X99)09712-3

PACS numbd(s): 64.60.Cn, 05.40-a

I. INTRODUCTION Essam[9,10] (p. 211 [11]. Sykes and Essam show that a

; : - SR :
In an earlier papef1] | reported simulations of percola- lattice L and its matching lattick* satisfy the relation

tion on correlated two- and three-dimensional lattices. The
correlations followed a model of Crossley, Schwartz, and

Banavar(2] that has been used by several autt{Gsg] to If the percolation thresholds of matching lattices satisfy Egs.

model random materials. Crossley, Schwartz, and Banav b o 0 % .
. ! S 2) and( 3), the limiting valuesp, andp, also satisfy Eq(3)
determine whether a lattice site is open or closed by gene?anda(l_*): a(L). The results reported in Rdfl] appear to

ating a random functioh(r) and comparing it with a thresh- agree with this, but, because of the small size of the square

old valuel;. The lattice site at location is open ifl(r) 9 . Y -~ : q

<I; and closed if (r)>1. To generaté(r) they first gen- 172 lattice, one canpot_draw a deﬁmte conqluspn. For the
T H triangular lattice, which is self-matching, E@) implies that

erate a random funct!omo(_r) with values at each Iatt'(?? p.=1/2 independent ofv. This appears to be satisfied by the
point drawn from identical, independent, uniform probability : . :
results of Ref[1], but again the small lattice size precludes a

distributions. Then they take the convolution lgf with a . .
smoothing functiork (r|w) to obtain the correlated random definite cqnclusmn. .
To clarify the results for the square 1-2 and triangular

Pc(L) +pe(L*)=1. ()

function lattices and to include all the standard two-dimensional lat-
tices, | have performed simulations on large triangular,
_ , N oade s square 1-2, honeycomb, kagome, and brick wall lattices.
I(r)= | K(r=r"[w)lo(r")d%’, (1) sketches of honeycomb, brick wall, and kagome lattices are
whered is the dimension of the space. This procedure yields Honeycomb

a correlated percolation lattice. Using the independent ran-
dom functionl o(r) rather thanl (r) gives ordinary percola-
tion.

In Ref.[1] | reported simulations on cubid X NX N lat-
tices withN=16, 32, and 64, on squafeX N lattices with
N=256, 512, and 1024, and on triangular and square 1-2
lattices withN=128.(A square 1-2 lattice has both first- and Brick wall
second-neighbor connectionsSeveral different smoothing | | | |
functions were used. In all cases, the percolation threghold
could be fit closely by a Gaussian function of the correlation | | | |

lengthw
| [ [ |
Pe=pz+(p—pDIe ™. @ adome
NAANA_NA_NA_/
The parameterpg andp; depend on the type of lattice X XX XX
but only slightly or not at all on the type of smoothing func-
tion. The parametar depends on both the type of lattice and
the type of smoothing function. The square and square 1-2
lattices are “matching lattices” as defined by Sykes and FIG. 1. Lattices.
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w shown in Fig. 1. The honeycomb and brick wall lattices are
FIG. 2. Percolation thresholds for honeycomb lattices. topologically identic_:al so they give the.same results for in._
dependent lattice sites. However, the distances between sites
are different in the two lattices so convolution leads to dif-
ferent results. Most simulations were preformed KX N
lattices withN=1024. A few simulations witiN=256 or

0.52 512 gave essentially the same results. Since different
LI LA LI L L . . . o
- 1 smoothing functions give results that are qualitatively the
i i same, most of the simulations were done only with the
0.50 - % 1 Gaussian smoothing function
0.48 |- i é .E KG(r|W):eir2/W2- (4)
o i g ¢ il For the honeycomb lattice, simulations were also performed
S 046 |- — using the Lorentzian smoothing function
: Y N =256 :
M i O N=s12 - Ki(rlw)=(1+r?w?) L (5
L m N0 ] _ ' _
L Gaussian Fit 1 As in Ref.[1], the functionl4(r) was obtained by calcu-
042 L - N lating ind_ependent random numbers,_ unifqrmly Qistributed
W - on the interval [0,1], for each lattice site using the
|: i FORTRAN library function RAN. The convolution of
0.400' - i - ; L 3' - "'t' —— with the smoothing function was done using the fast Fourier

transform[12]. And the percolation threshold was deter-
w mined using the Hoshen-Kopelman algorithit3-15.

FIG. 3. Percolation thresholds for square 1-2 lattices.
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TABLE I. Gaussian fit parameters. % 1.01{E -
0 0
Lattice p° o a ;3 1.00 i 4
Square*? 0.595+0.002  0.50%:0.002  0.4080.031 £ 099 —I
Square 1-?  0.410:0.002  0.487%0.002 0.49-0.04 & -
Honeycomd®  0.703+0.002  0.574:0.002  0.27-0.01 S 098 g N=256 .
Honeycomlf  0.698+0.004  0.5690.003 0.48-0.05 . [ Nes2 ]
Brick wall ® 0.704-0.002  0.5670.002 0.35-0.02 T g Netom
Kagome® 0.653-0.003  0.559-0.003 0.28-0.03 il B PR ETEE P

3 rom Ref.[1].

bwith the Gaussian smoothing function.
‘With the Lorentzian smoothing function.
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FIG. 5. Sum of percolation thresholds for matching lattices.
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Il. RESULTS AND DISCUSSION The simulated dependence of the percolation threshold on
Figures 2 and 3 show the dependence of percolatio orrelation length can be fit by E@2). The parameters in

threshold on correlation length for, respectively, honeycomﬁ is equation are listed in Table 1. For comparison, | have
and square 1-2 lattices, both with Gaussian smoothing funca_llso included the paorameteorcs for the square lattice from Ref.
tions. The solid line in each figure is a fit of the data to Eq.[1]- It appears thap; andp. are dependent on the lattice
(2). Figures 2 and 3 are typical of all of the simulations ontype but not on the smoothing functior; is dependent on
two-dimensional lattices. The percolation thresholds appedpoth lattice type and smoothing function.

to fit on a single curve, independent of lattice size. The For the triangular lattice, which is self-matching, E8)
thresholds folN= 128, which were left out to avoid clutter- impliesp.= 1/2 independent of correlation length. The simu-
ing the figures, also appear to fit on the same curve. Ther@ted results, shown in Fig. 4, agree very well with this ex-
might be a weak dependence of threshold on the lattice sizeept for a small deviation at large correlation length which is
at large correlation lengths. However, the large uncertaintiegrobably an effect of lattice size. Taking an average of all the
in the simulated percolation thresholds at larger correlatiorsimulated data gives a value for the triangular latticepof
lengths and smaller lattice sizes make it impossible to draw & 0.507+0.003. Figure 5 shows the sum of the percolation
definite conclusion. In any case, one would expect the latticéhresholds for the square and square 1-2 lattices. The results
size to become more significant at large correlation lengthagree very well with Eq(3). Taking an average of all the
The only qualitative difference in the dependence of percodata gives a value op.(squarej p(square +2)=0.998
lation threshold on correlation length is whether the percola==0.002. Comparing the Gaussian fit parameters in Table |
tion threshold increases or decreases with increasing correlae see thapg andp, satisfy Eq.(3) as expected. However,
tion length. Equation(3) implies that if the percolation contrary to expectationsg(square} a(square +2). This
threshold of a lattice increasédecreaseswith correlation  suggests that the Gaussian function gives a phenomenologi-
length, the threshold of its matching lattice decrea@es cal fit to the data, but does not have any theoretical

creasep significance.
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