
PHYSICAL REVIEW E DECEMBER 1999VOLUME 60, NUMBER 6
Percolation threshold of correlated two-dimensional lattices
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Physics Department, Marquette University, Milwaukee, Wisconsin 53233

~Received 26 August 1999!

Previous simulations of percolation on correlated square and cubic lattices@Phys. Rev. E56, 6586~1997!#
have been extended to all of the common two-dimensional lattices, including triangular, square 1-2, honey-
comb, and kagome. Simulations were performed on lattices of up to 102431024 sites. The results are inde-
pendent of lattice size except, possibly, for a weak dependence at large correlation lengths. As in the previous

studies, all results can be fit by a Gaussian function of the correlation lengthw, pc5pc
`1(pc

02pc
`)e2aw2

.
However, there is some evidence that this fit is not theoretically significant. For the self-matching triangular
and the matching square and square 1-2 lattices, the percolation thresholds satisfy the Sykes-Essam relation
pc(L)1pc(L* )51. @S1063-651X~99!09712-3#

PACS number~s!: 64.60.Cn, 05.40.2a
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I. INTRODUCTION

In an earlier paper@1# I reported simulations of percola
tion on correlated two- and three-dimensional lattices. T
correlations followed a model of Crossley, Schwartz, a
Banavar@2# that has been used by several authors@3–8# to
model random materials. Crossley, Schwartz, and Bana
determine whether a lattice site is open or closed by ge
ating a random functionI (r ) and comparing it with a thresh
old value I T . The lattice site at locationr is open if I (r )
<I T and closed ifI (r ).I T . To generateI (r ) they first gen-
erate a random functionI 0(r ) with values at each lattice
point drawn from identical, independent, uniform probabil
distributions. Then they take the convolution ofI 0 with a
smoothing functionK(r uw) to obtain the correlated random
function

I ~r !5E K~r2r 8uw!I 0~r 8!ddr 8, ~1!

whered is the dimension of the space. This procedure yie
a correlated percolation lattice. Using the independent r
dom functionI 0(r ) rather thanI (r ) gives ordinary percola-
tion.

In Ref. @1# I reported simulations on cubicN3N3N lat-
tices withN516, 32, and 64, on squareN3N lattices with
N5256, 512, and 1024, and on triangular and square
lattices withN5128.~A square 1-2 lattice has both first- an
second-neighbor connections.! Several different smoothing
functions were used. In all cases, the percolation thresholpc
could be fit closely by a Gaussian function of the correlat
lengthw

pc5pc
`1~pc

02pc
`!e2aw2

. ~2!

The parameterspc
0 and pc

` depend on the type of lattic
but only slightly or not at all on the type of smoothing fun
tion. The parametera depends on both the type of lattice an
the type of smoothing function. The square and square
lattices are ‘‘matching lattices’’ as defined by Sykes a
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Essam@9,10# ~p. 211! @11#. Sykes and Essam show that
lattice L and its matching latticeL* satisfy the relation

pc~L !1pc~L* !51. ~3!

If the percolation thresholds of matching lattices satisfy E
~2! and~ 3!, the limiting valuespc

0 andpc
` also satisfy Eq.~3!

anda(L* )5a(L). The results reported in Ref.@1# appear to
agree with this, but, because of the small size of the squ
1-2 lattice, one cannot draw a definite conclusion. For
triangular lattice, which is self-matching, Eq.~3! implies that
pc51/2 independent ofw. This appears to be satisfied by th
results of Ref.@1#, but again the small lattice size precludes
definite conclusion.

To clarify the results for the square 1-2 and triangu
lattices and to include all the standard two-dimensional
tices, I have performed simulations on large triangul
square 1-2, honeycomb, kagome, and brick wall lattic
Sketches of honeycomb, brick wall, and kagome lattices

FIG. 1. Lattices.
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FIG. 2. Percolation thresholds for honeycomb lattices.

FIG. 3. Percolation thresholds for square 1-2 lattices.

TABLE I. Gaussian fit parameters.

Lattice pc
0 pc

` a

Squarea,b 0.59560.002 0.50560.002 0.40860.031
Square 1-2b 0.41060.002 0.48760.002 0.4960.04
Honeycombb 0.70360.002 0.57460.002 0.2760.01
Honeycombc 0.69860.004 0.56960.003 0.4860.05
Brick wall b 0.70460.002 0.56760.002 0.3560.02
Kagomeb 0.65360.003 0.55960.003 0.2860.03

aFrom Ref.@1#.
bWith the Gaussian smoothing function.
cWith the Lorentzian smoothing function.
shown in Fig. 1. The honeycomb and brick wall lattices a
topologically identical so they give the same results for
dependent lattice sites. However, the distances between
are different in the two lattices so convolution leads to d
ferent results. Most simulations were preformed onN3N
lattices with N51024. A few simulations withN5256 or
512 gave essentially the same results. Since differ
smoothing functions give results that are qualitatively t
same, most of the simulations were done only with t
Gaussian smoothing function

KG~r uw!5e2r 2/w2
. ~4!

For the honeycomb lattice, simulations were also perform
using the Lorentzian smoothing function

KL~r uw!5~11r 2/w2!21. ~5!

As in Ref. @1#, the functionI 0(r ) was obtained by calcu
lating independent random numbers, uniformly distribut
on the interval @0,1#, for each lattice site using the
FORTRAN library function RAN. The convolution ofI 0
with the smoothing function was done using the fast Fou
transform @12#. And the percolation threshold was dete
mined using the Hoshen-Kopelman algorithm@13–15#.

FIG. 4. Percolation thresholds for triangular lattices.

FIG. 5. Sum of percolation thresholds for matching lattices.
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II. RESULTS AND DISCUSSION

Figures 2 and 3 show the dependence of percola
threshold on correlation length for, respectively, honeyco
and square 1-2 lattices, both with Gaussian smoothing fu
tions. The solid line in each figure is a fit of the data to E
~2!. Figures 2 and 3 are typical of all of the simulations
two-dimensional lattices. The percolation thresholds app
to fit on a single curve, independent of lattice size. T
thresholds forN5128, which were left out to avoid clutter
ing the figures, also appear to fit on the same curve. Th
might be a weak dependence of threshold on the lattice
at large correlation lengths. However, the large uncertain
in the simulated percolation thresholds at larger correla
lengths and smaller lattice sizes make it impossible to dra
definite conclusion. In any case, one would expect the lat
size to become more significant at large correlation leng
The only qualitative difference in the dependence of per
lation threshold on correlation length is whether the perco
tion threshold increases or decreases with increasing cor
tion length. Equation~3! implies that if the percolation
threshold of a lattice increases~decreases! with correlation
length, the threshold of its matching lattice decreases~in-
creases!.
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The simulated dependence of the percolation threshold
correlation length can be fit by Eq.~2!. The parameters in
this equation are listed in Table I. For comparison, I ha
also included the parameters for the square lattice from R
@1#. It appears thatpc

0 and pc
` are dependent on the lattic

type but not on the smoothing function;a is dependent on
both lattice type and smoothing function.

For the triangular lattice, which is self-matching, Eq.~3!
impliespc51/2 independent of correlation length. The sim
lated results, shown in Fig. 4, agree very well with this e
cept for a small deviation at large correlation length which
probably an effect of lattice size. Taking an average of all
simulated data gives a value for the triangular lattice ofpc
50.50760.003. Figure 5 shows the sum of the percolati
thresholds for the square and square 1-2 lattices. The re
agree very well with Eq.~3!. Taking an average of all the
data gives a value ofpc(square)1pc(square 122)50.998
60.002. Comparing the Gaussian fit parameters in Tab
we see thatpc

0 andpc
` satisfy Eq.~3! as expected. However

contrary to expectations,a(square)Þa(square 122). This
suggests that the Gaussian function gives a phenomeno
cal fit to the data, but does not have any theoreti
significance.
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